EE EEE B EEE
CI T R
E NN EE
I OCEED N EEE
(SN (EE] | (5w |
SIS i, | |
] = EEEEEEEE B
H EENESEEEEE
EN NEN W BN
W H EEE §
RIS .
| _EEE H EE
OEE E EEE
 IEEEEEE NN
EE N BN EEEE
H H EEEEEEEEE
EEEE OE Dol
H EEE BN N N
H EEEEEE EEE
EEEEEE HEEE
EEEEN EEN.
E BN EEEEE
PEEEEEEEEE
S
] EEEE EEEEEE
" H EN _NEE N
EE DN EEEEE N
H ©IEE HEEN
H BN EEEECEE =
ENE DEEE EE
HE BN EEEEEENE
ENE EEE 'H
EECEOEEEEE &
T IR
E ENOEEEEEEE N
H EEEN N
E EEEEEN EEE N
N EEEEEEEE N
H NN EEE EENEE
ENCENENEE EE N
¥ SEEEEEEEEEE
CEHCEEDnD
HE NN
N EEEEEENEE -
O EEEE O
EEEEEEEEEEE B
EEEEEEEEEE N

EDITION

o
EWILEY
un m mm" Em

ing

““Python

o
AN APPLICATION DEVELOPMENT FOCUS

Comput

Ljubomir Perkovic

Introduction to

Introduction to Computing
Using Python

Second Edition

Introduction to Computing
Using Python

An Application Development Focus

Second Edition

Ljubomir Perkovic
DePaul University

VICE PRESIDENT AND DIRECTOR Laurie Rosatone

SENIOR DIRECTOR Don Fowley

SENIOR ACQUISITIONS EDITOR Bryan Gambrel

PROJECT SPECIALIST Marcus Van Harpen
EDITORIAL ASSISTANT Jessy Moor

EXECUTIVE MARKETING MANAGER Dan Sayre

SENIOR CONTENT MANAGER Elle Wagner

SENIOR PRODUCTION EDITOR John Curley

PROOFREADER Betty Pessagno

COMPOSITOR B. Praveen Kumar for SPi Global
COVER PHOTO ©simon2579/iStockphoto

This book was set in TgX Gyre Termes 10 and TgX Gyre Heros 10 by Ljubomir Perkovi¢ and printed and bound
by Quad Graphics/Versailles. The cover was printed by Quad Graphics/Versailles.

This book is printed on acid-free paper. oo

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live and
work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and
community and charitable support. For more information, please visit our website:
www.wiley.com/go/citizenship.

Copyright © 2015 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030-5774,

(201) 748-6011, fax (201) 748-6008, website www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their
courses during the next academic year. These copies are licensed and may not be sold or transferred to a third
party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and
a free of charge return mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt
this textbook for use in your course, please accept this book as your complimentary desk copy. Outside of the
United States, please contact your local sales representative.

Library of Congress Cataloging-in-Publication Data

Perkovic, Ljubomir.

Introduction to computing using Python : an application development focus / Ljubomir Perkovic, DePaul
University. — Second edition.

pages cm

Includes index.

ISBN 978-1-118-89094-3 (pbk.)
1. Python (Computer program language) 2. Object-oriented programming (Computer science) 3. Computer
programming. I. Title.
QA76.73.P98P47 2015
005.1°17-dc23 2015008087

ISBN: 978-1-118-89094-3

Printed in the United States of America

10987654321

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

To my father, Milan Perkovi¢ (1937-1970),

who did not get the chance to complete his book.

Contents

Preface

Online Textbook Supplements :
For Students: How to Read This Book .
Overview of the Book .

What Is New in This Edition? .

For Instructors: How to Use This Book

1

Introduction to Computer Science

1.1 Computer Science . . :
What Do Computing Professionals Do’? .
Models, Algorithms, and Programs.
Tools of the Trade .
What Is Computer Science? .

1.2 Computer Systems.
Computer Hardware
Operating Systems .
Networks and Network Protocols
Programming Languages .
Software Libraries .

1.3 Python Programming Language
Short History of Python

Setting Up the Python Development Enwronment.

1.4 Computational Thinking .
A Sample Problem .
Abstraction and Modeling .
Algorithm .
Data Types
Assignments and Executron Control Structures

Chapter Summary .

Xix
XX
XX

XXi

XXiv
XXV

© 0000 0 NN~ PP pOOWOONDDN =

—_
N - O O o

—_
w

Vii

viii

Contents

2
Python Data Types

2.1 Expressions, Variables, and Assignments.
Algebraic Expressions and Functions .
Boolean Expressions and Operators .
Variables and Assignments .
Variable Names .
2.2 Strings. .o
String Operators .
Indexing Operator
2.3 Lists and Tuples .
List Operators
Lists Are Mutable, Strings Are Not
Tuples, or “Immutable Lists” .
List and Tuple Methods
2.4 Objects and Classes .
Object Type .
Valid Values for Number Types .
Operators for Number Types.
Creating Objects.
Implicit Type Conversions.
Explicit Type Conversions.
Class Methods and Object- Orrented Programmlng
2.5 Python Standard Library.
Module math .
Module fractions.
Case Study: Turtle Graphics .
Chapter Summary . .
Solutions to Practice Problems .

Exercises

3

Imperative Programming

3.1 Python Programs .
Our First Python Program
Python Modules .
Built-In Function print () .
Interactive Input with input () .
Function eval ().

15

16
16
18
20
22
23
23
25
27
27
29
29
31
33
33
35
36
37
38
39
40
41
41
42
43
43
44

45

51

52
52
54
54
55
56

3.2 Execution Control Structures .
One-Way Decisions.
Two-Way Decisions .
Iteration Structures .
Nesting Control Flow Structures
Function range ()

3.3 User-Defined Functions .
Our First Function
Function Input Arguments.
print () versus return .

Function Definitions Are “ASS|gnment Statements

Comments.
Docstrings . .

3.4 Python Variables and A33|gnments
Mutable and Immutable Types .
Assignments and Mutability .
Swapping .

3.5 Parameter Passing .

Immutable Parameter Passing .
Mutable Parameter Passing .

Case Study: Automating Turtle Graphics .
Chapter Summary . o

Solutions to Practice Problems

Exercises

Problems

4

Text Data, Files, and Exceptions

4.1 Strings, Revisited
String Representations.
The Indexing Operator, ReV|S|ted
String Methods
4.2 Formatted Output
Function print ()
String Method format () .
Lining Up Data in Columns .
Getting and Formatting the Date and Tlme .
4.3 Files.

File System .
Opening and Closing a F|Ie .
Patterns for Reading a Text File.
Writing to a Text File

57
57
60
62
65
66
67
67
68
70
71
72
72
74
75
76
77
78
79
80
81
81
82
85
86

91

92
92
94
95
98
98
100
102
105
107
107
109
112
115

Contents

ix

X

Contents

4.4 Errors and Exceptions

Syntax Errors.
Built-In Exceptions .

Case Study: Image Files
Chapter Summary . .
Solutions to Practice Problems .
Exercises

Problems

5

Execution Control Structures

5.1 Decision Control and the if Statement.
Three-Way (and More!) Decisions .
Ordering of Conditions.

5.2 for Loop and lteration Patterns.
Loop Pattern: Iteration Loop .
Loop Pattern: Counter Loop .
Loop Pattern: Accumulator Loop
Accumulating Different Types
Loop Patterns: Nested Loop .

5.3 More on Lists: Two-Dimensional Lists
Two-Dimensional Lists .

Two-Dimensional Lists and the Nested Loop Pattern .

5.4 while Loop.
while Loop Usage .
5.5 More Loop Patterns

Iteration Patterns: Sequence Loop .
Loop Pattern: Infinite Loop
Loop Pattern: Loop and a Half .

5.6 Additional Iteration Control Statements .

break Statement
continue Statement .
pass Statement .

Case Study: Image Processing.
Chapter Summary .

Solutions to Practice Problems .
Exercises

Problems

116

116
117

119
119
120
121
124

127

128

128
130

131
131
132
134
135
137
139

140
141

143
143
145

145
147
147

149

149
150
151

151
151
152
155
157

6

Containers and Randomness

6.1 Dictionaries.

6.2 Sets.

User-Defined Indexes as Motivation for Dictionaries .
Dictionary Class Properties .

Dictionary Operators

Dictionary Methods .

A Dictionary as a Substitute for the Multlway if Statement.

Dictionary as a Collection of Counters
tuple Objects Can Be Dictionary Keys .

Using the set Constructor to Remove Duplicates .
set Operators
set Methods .

6.3 Character Encodings and Strlngs .

Character Encodings

ASCII

Unicode

UTF-8 Encoding for Unlcode Characters

6.4 Module random .

Choosing a Random Integer .
Choosing a Random “Real” .
Shuffling, Choosing, and Sampling at Random

Case Study: Games of Chance.
Chapter Summary . .
Solutions to Practice Problems .

Exercises
Problems

/

Namespaces
7.1 Encapsulation in Functions.

Code Reuse . .
Modularity (or Procedural Decomposmon)
Encapsulation (or Information Hiding) .

Local Variables .

Namespaces Associated W|th Functlon CaIIs
Namespaces and the Program Stack .

165

166
166
167
169
170
173
173
176
177
178
179
180
181
181
182
183
185

186

187
188
189

190
190
190
194
195

203

204
204
205
205
205
206
207

Contents

Xi

Xii

Contents

7.2 Global versus Local Namespaces .

Global Variables .

Variables with Local Scope

Variables with Global Scope .

Changing Global Variables Inside a Functlon
7.3 Exceptional Control Flow .

Exceptions and Exceptional Control FIow

Catching and Handling Exceptions.

The Default Exception Handler .

Catching Exceptions of a Given Type .

Multiple Exception Handlers . .

Controlling the Exceptional Control Flow
7.4 Modules as Namespaces

Module Attributes

What Happens When Importlng a Module

Module Search Path

Top-Level Module .

Different Ways to Import Module Attrlbutes .
7.5 Classes as Namespaces

A Class Is a Namespace .

Class Methods Are Functions Deflned in the Class Namespace .

Case Study: Debugging with a debugger .
Chapter Summary . :

Solutions to Practice Problems

Exercises

Problems

8

Object-Oriented Programmmg

8.1 Defining a New Python Class.

Methods of Class Point .

A Class and Its Namespace . .
Every Object Has an Associated Namespace .
Implementation of Class Point .

Instance Variables . .

Instances Inherit Class Attrlbutes .

Class Definition, More Generally

Documenting a Class .

Class Animal.

8.2 Examples of User-Defined Classes

Overloaded Constructor Operator .
Default Constructor .
Playing Card Class .

211
211
212
212
214
215
215
216
218
218
219
220
223
223
224
224
226
228
230
230
231
231
232
232
233
236

239

240
240
241
242
242
243
244
245
246
247

248

248
249
250

8.3 Designing New Container Classes. :
Designing a Class Representing a Deck of PIaylng Cards .
Implementing the Deck (of Cards) Class .
Container Class Queue
Implementing a Queue Class

8.4 Overloaded Operators
Operators Are Class Methods
Making the Class Point User Friendly

Contract between the Constructor and the repr () Operator .

Making the Queue Class User Friendly
8.5 Inheritance . .
Inheriting Attrlbutes of a Class .
Class Definition, in General .
Overriding Superclass Methods .
Extending Superclass Methods .
Implementing a Queue Class by Inheriting from 11st
8.6 User-Defined Exceptions
Raising an Exception
User-Defined Exception Classes
Improving the Encapsulation of Class Queue
Case Study: Indexing and Iterators
Chapter Summary . .
Solutions to Practice Problems
Exercises
Problems

9

Graphical User Interfaces

9.1 Basics of tkinter GUI Development
Widget Tk: The GUI Window.
Widget Label for Displaying Text .
Displaying Images .
Packing Widgets. .
Arranging Widgets in a Gl’ld
9.2 Event-Based tkinter Widgets .
Button Widget and Event Handlers
Events, Event Handlers, and mainloop ()
The Entry Widget . .
Text Widget and Binding Events .o
Event Patterns and the tkinter Class Event .
9.3 Designing GUIs .

Widget Canvas .
Widget Frame as an Organlzmg Wldget

251
251
252
254
255
256
257
258
260
262
264
264
267
267
270
271
272
273
274
274
275
275
276
279
281

291

292
292
292
294
295
297
299
299
301
302
305
306
308

308
311

Contents

xiii

Xiv

Contents

9.4 OOP for GUIs .
GUI OOP Basics.

Shared Widgets Are ASS|gned to Instance Varlables

Shared Data Are Assigned to Instance Variables .
Case Study: Developing a Calculator
Chapter Summary . S
Solutions to Practice Problems .
Exercises
Problems

10

Recursion

10.1 Introduction to Recursion .
Functions that Call Themselves .
Stopping Condition .
Properties of Recursive Functlons
Recursive Thinking . .
Recursive Function Calls and the Program Stack
10.2 Examples of Recursion. :
Recursive Number Sequence Pattern.
Fractals.
Virus Scanner
Linear recursion .
10.3 Run Time Analysis
The Exponent Function
Counting Operations
Fibonacci Sequence
Experimental Analysis of Run Tlme
10.4 Searching .
Linear Search.
Binary Search .
Linear versus Binary Search .
Uniqueness Testing. .o
Selecting the kth Largest (Smallest) Item
Computing the Most Frequently Occurring Item
Case Study: Tower of Hanoi .
Chapter Summary . S
Solutions to Practice Problems .
Exercises
Problems

313
313
315
317
318
319
319
323
324

329

330
330
331
332
332
334

336
336
338
342
345
347
347
349
349
351

354

354
354
356
357
358
359

359
360
360
362
363

11

The Web and Search

11.1 The World Wide Web .
Web Servers and Web Clients .
“Plumbing” of the WWW .
Naming Scheme: Uniform Resource Locator
Protocol: HyperText Transfer Protocol .
HyperText Markup Language
HTML Elements . .
Tree Structure of an HTML Document
Anchor HTML Element and Absolute Links .
Relative Links.

11.2 Python WWW API

Module urllib.request
Module html .parser .
Overriding the HTMLParser Handlers
Module urllib.parse
Parser That Collects HTTP Hyperllnks
11.3 String Pattern Matching
Regular Expressions
Python Standard Library Module re
Case Study: Web Crawler .
Chapter Summary . Lo
Solutions to Practice Problems .
Exercises
Problems

12

Databases and Data Processing

12.1 Databases and SQL.

Database Tables. .
Structured Query Language .
Statement SELECT.

Clause WHERE .

Built-In SQL Functions.
Clause GROUP BY .

Making SQL Queries Involving Multlple Tables

Statement CREATE TABLE .
Statements INSERT and UPDATE .

371

372
372
373
373
374
375
376
377
377
378
379
379
381
383
384
385

387
387
390
391
392
392
394
395

399

400

400
402
402
404
406
406
407
409
409

Contents

XV

XVi

Contents

12.2 Database Programming in Python

Database Engines and SQLite .
Creating a Database with sqlite3

Committing to Database Changes and Closing the Database .
Querying a Database Using sqlite3.

12.3 Functional Language Approach
List Comprehension

MapReduce Problem-Solving Framework

MapReduce, in the Abstract .
Inverted Index

12.4 Parallel Computing
Parallel Computing .

Class Pool of Module multlprocess1ng .

Parallel Speedup
MapReduce, in Parallel

Parallel versus Sequential MapReduce .

Case Study: Data Interchange .
Chapter Summary . S
Solutions to Practice Problems .
Exercises
Problems

Case Studies

CS.2 Turtle Graphics

Classes Screen and Turtle
Solution to the Practice Problem
Problems .

CS.3 Automating Turtle Graphrcs
Function jump (). .
Solution to the Practice Problem
Problems .

CS.4 Processing Image Frles
Class Image in Module PIL. Image
Image Size, Format, and Mode .
Image Class Methods . .
Creating and Saving a New Image .
Solution to the Practice Problem
Problems .

CS.5 Image-Processing AIgorlthms
Accessing Pixels.
Copying an Image . . .
Rotating an Image by 90 Degrees .
Applying an Image Filter .
Solutions to Practice Problems .
Problems .

410
410
411
412
413
415
415
417
420
421
423
423
424
427
428
429

431
432
432
435
436

441

442
442
446
446
448
448
450
450
452
452
453
454
455
456
457
458
458
459
459
461
463
464

CS.6 Games of Chance
Blackjack .
Creating and Shuﬁllng the Deck of Cards
Dealing a Card
Computing the Value of a Hand
Comparing the Player’'s and the House’s Hands
Main Blackjack Function .
Problems . . .

CS.7 Debugging with a Debugger
Debugging Commands
Analyzing the Program Stack
Solution to the Practice Problem
Problems .

CS.8 Indexing and Iterators :
Overloading the Indexing Operators
Iterators and OOP Design Patterns
Solutions to Practice Problems .
Problems .

CS.9 Developing a Calculator :

The Calculator Buttons and Passrng Arguments to Handlers .

Implementing the “Unofficial” Event Handler click()
Solution to the Practice Problem
Problems .

CS.10 Tower of Hanoi

The Recursive Solution
Classes Peg and Disk.
Problems .
CS.11 Web Crawlers S
Recursive Crawler, Version 0.1 .
Recursive Crawler, Version 0.2 .
The Web Page Content Analysis
Solution to the Practice Problem
Problems .
CS.12 Data Interchange o :
Serialization and Data Interchange Formats.
JSON (JavaScript Object Notation)
Data Compression .
I/O Streams .
Solution to the Practrce Problems .
Problems .

Index

465
465
466
467
467
468
468
469
471
471
474
476
477
479
479
481
484
484
486
486
488
490
490
492
493

495
497
498
498
500
502
504
505
506
506
506
508
510
512
513

514

Contents

XVii

Preface

This textbook is an introduction to programming, computer application development, and
the science of computing. It is meant to be used in a college-level introductory programming
course. More than just an introduction to programming, the book is a broad introduction to
computer science concepts and to the tools used for modern computer application develop-
ment.

The computer programming language used in the book is Python, a language that has a
gentler learning curve than most. Python comes with powerful software libraries that make
complex tasks—such as developing a graphics application or finding all the links in a web
page—a breeze. In this textbook, we leverage the ease of learning Python and the ease of
using its libraries to do more computer science and to add a focus on modern application
development. The result is a textbook that is a broad introduction to the field of computing
and modern application development.

The textbook’s pedagogical approach is to introduce computing concepts and Python
programming in a breadth-first manner. Rather than covering computing concepts and Python
structures one after another, the book’s approach is more akin to learning a natural language,
starting from a small general-purpose vocabulary and then gradually extending it. The pre-
sentation is in general problem oriented, and computing concepts, Python structures, algo-
rithmic techniques, and other tools are introduced when needed, using a “right tool at the
right moment” model.

The book uses the imperative-first and procedural-first paradigm but does not shy away
from discussing objects early. User-defined classes and object-oriented programming are
covered later, when they can be motivated and students are ready. The last three chapters of
the textbook and the associated case studies use the context of web crawling, search engines,
and data mining to introduce a broad array of topics. These include foundational concepts
such as recursion, regular expressions, depth-first search, data compression, and Google’s
MapReduce framework, as well as practical tools such as GUI widgets, HTML parsers,
SQL, JSON, I/O streams, and multicore programming.

This textbook can be used in a course that introduces computer science and program-
ming to computer science majors. Its broad coverage of foundational computer science top-
ics as well as current technologies will give the student a broad understanding of the field
and a confidence to develop “real” modern applications that interact with the web and/or a
database. The textbook’s broad coverage also makes it ideal for students who need to master
programming and key computing concepts but will not take more than one or two computing
courses.

Xix

XX

Preface

The Book’s Technical Features

The textbook has a number of features that engage students and encourage them to get their
hands dirty. For one, the book makes heavy use of examples that use the Python interactive
shell. Students can easily reproduce these one-liners on their own. After doing so, students
will likely continue experimenting further using the immediate feedback of the interactive
shell.

Throughout the textbook, there are inline practice problems whose purpose is to rein-
force concepts just covered. The solutions to these problems appear at the end of the corre-
sponding chapter or case study, allowing students to check their solution or take a peek in
case they are stuck.

The textbook uses Caution boxes to warn students of potential pitfalls. It also uses Detour
boxes to briefly explore interesting but tangential topics. The large number of boxes, practice
problems, figures, and tables create visual breaks in the text, making reading the volume
more approachable for students.

Finally, the textbook contains a large number of end-of-chapter problems, many of which
are unlike problems typically found in an introductory textbook.

The E-Book Edition of the textbook includes additional material consisting of 11 case
studies. Each case study is associated with a chapter (2 through 12) and showcases the
concepts and tools covered in the chapter in context. The case studies include additional
problems, including practice problems with solutions.

Online Textbook Supplements

These textbook supplements are available on the textbook web site:

* PowerPoint slides for each chapter

* Learning objectives for each section

* Code examples appearing in the book

* Exercise and problem solutions (for instructors only)

» Exam problems (for instructors only)

For Students: How to Read This Book

This book is meant to help you master programming and develop computational thinking
skills. Programming and computational thinking are hands-on activities that require a com-
puter with a Python integrated development environment as well as a pen and paper for
“back-of-the-envelope” calculations. Ideally, you should have those tools next to you as you
read this book.

The book makes heavy use of small examples that use Python’s interactive shell. Try
running those examples in your shell. Feel free to experiment further. It’s very unlikely the
computer will burst into flames if you make a mistake!

You should also attempt to solve all the practice problems as they appear in the text.
Problem solutions appear at the end of the corresponding chapter. If you get stuck, it’s OK
to peek at the solution; after doing so, try solving the problem without peeking.

The text uses Caution boxes to warn you of potential pitfalls. These are very important
and should not be skipped. The Detour boxes, however, discuss topics that are only tangen-

tially related to the main discussion. You may skip those if you like. Or you may go further
and explore the topics in more depth if you get intrigued.

At some point while reading this text, you may get inspired to develop your own app,
whether a card game or an app that keeps track of a set of stock market indexes in real time.
If so, just go ahead and try it! You will learn a lot.

Overview of the Book

This textbook consists of 12 chapters that introduce computing concepts and Python pro-
gramming in a breadth-first manner. The E-Book Edition also includes case studies that
showcase concepts and tools covered in the chapters in context.

Tour of Python and Computer Science

Chapter 1 introduces the basic computing concepts and terminology. Starting with a dis-
cussion of what computer science is and what developers do, the concepts of modeling,
algorithm development, and programming are defined. The chapter describes the computer
scientist’s and application developer’s toolkit, from logic to systems, with an emphasis on
programming languages, the Python development environment, and computational think-
ing.

Chapter 2 covers core built-in Python data types: the integer, Boolean, floating-point,
string, list, and tuple types. To illustrate the features of the different types, the Python interac-
tive shell is used. Rather than being comprehensive, the presentation focuses on the purpose
of each type and the differences and similarities between the types. This approach motivates
a more abstract discussion of objects and classes that is ultimately needed for mastering the
proper usage of data types. Case Study CS.2 takes advantage of this discussion to introduce
Turtle graphics classes that enable students to do simple, fun graphics interactively.

Chapter 3 introduces imperative and procedural programming, including basic execu-
tion control structures. This chapter presents programs as a sequence of Python statements
stored in a file. To control how the statements are executed, basic conditional and iterative
control structures are introduced: the one-way and two-way if statements as well as the
simplest for loop patterns of iterating through an explicit sequence or a range of numbers.
The chapter introduces functions as a way to neatly package a small application; it also
builds on the material on objects and classes covered in Chapter 2 to describe how Python
does assignments and parameter passing. Case Study CS.3 uses the visual context of Turtle
graphics to motivate automation through programs and abstraction through functions.

The first three chapters provide a shallow but broad introduction to Python program-
ming and computers science. Core Python data types and basic execution control structures
are introduced so students can write simple but complete programs early. Functions are in-
troduced early as well to help students conceptualize what a program is doing, that is, what
inputs it takes and what output it produces. In other words, abstraction and encapsulation of
functions is used to help students better understand programs.

Focus on Algorithmic Thinking

Chapter 4 covers text and file processing in more depth. It continues the coverage of strings
from Chapter 2 with a discussion of string value representations, string operators and meth-
ods, and formatted output. File input/output (I/O) is introduced as well and, in particular,
the different patterns for reading text files. Finally, the context of file I/O is used to motivate

Preface

XXi

XXii

Preface

a discussion of exceptions and the different types of exceptions in Python. Case Study CS.4
discusses how image files (typically stored as binary files rather than text files) are read and
written and how images can be processed using Python.

Chapter 5 covers execution control structures and loop patterns in depth. Basic condi-
tional and iteration structures were introduced in Chapter 3 and then used in Chapter 4 (e.g.,
in the context of reading files). Chapter 5 starts with a discussion of multiway conditional
statements. The bulk of the chapter is spent on describing the different loop patterns: the
various ways for loops and while loops are used. Multidimensional lists are introduced as
well, in the context of the nested loop pattern. More than just covering Python loop struc-
tures, this core chapter describes the different ways that problems can be broken down.
Thus, the chapter fundamentally is about problem solving and algorithms. Case Study CS.5
looks underneath the hood of image processing and describes how classic image processing
algorithms can be implemented.

Chapter 6 completes the textbook’s coverage of Python’s built-in container data types
and their usage. The dictionary, set, and tuple data types are motivated and introduced. This
chapter also completes the coverage of strings with a discussion of character encodings and
Unicode. Finally, the concept of randomness is introduced in the context of selecting and
permuting items in containers. Case Study CS.6 makes use of concepts introduced in this
chapter to show how a blackjack application can be developed.

Chapters 4 through 6 represent the second layer in the breadth-first approach this text-
book takes. One of the main challenges students face in an introductory programming course
is mastering conditional and iteration structures and, more generally, the computational
problem-solving and algorithm development skills. The critical Chapter 5, on patterns of
applying execution control structures, appears after students have been using basic condi-
tional statements and iteration patterns for several weeks and have gotten somewhat com-
fortable with the Python language. Having gained some comfort with the language and basic
iteration, students can focus on the algorithmic issues rather than less fundamental issues,
such as properly reading input or formatting output.

Managing Program Complexity

Chapter 7 shifts gears and focuses on the software development process itself and the prob-
lem of managing larger, more complex programs. It introduces namespaces as the founda-
tion for managing program complexity. The chapter builds on the coverage of functions and
parameter passing in Chapter 3 to motivate the software engineering goals of code reuse,
modularity, and encapsulation. Functions, modules, and classes are tools that can be used to
achieve these goals, fundamentally because they define separate namespaces. The chapter
describes how namespaces are managed during normal control flow and during exceptional
control flow, when exceptions are handled by exception handlers. Case Study CS.7 builds
on this chapter’s content to show how to use a debugger to find bugs in a program or, more
generally, to analyze the execution of the program.

Chapter 8 covers the development of new classes in Python and the object-oriented pro-
gramming (OOP) paradigm. The chapter builds on Chapter 7’s uncovering of how Python
classes are implemented through namespaces to explain how new classes are developed. The
chapter introduces the OOP concepts of operator overloading—central to Python’s design
philosophy—and inheritance—a powerful OOP property that will be used in Chapters 9 and
11. Through abstraction and encapsulation, classes achieve the desirable software engineer-
ing goals of modularity and code reuse. The context of abstraction and encapsulation is then
used to motivate user-defined exception classes. Case Study CS.8 goes one step further and
illustrates the implementation of iterative behavior in user-defined container classes.

Chapter 9 introduces graphical user interfaces (GUIs) and showcases the power of the
OOP approach for developing GUIs. It uses the Tk widget toolkit, which is part of the
Python Standard Library. The coverage of interactive widgets provides the opportunity to
discuss the event-driven programming paradigm. In addition to introducing GUI develop-
ment, the chapter also showcases the power of OOP to achieve modular and reusable pro-
grams. Case Study CS.9 illustrates this in the context of implementing a basic calculator
GUL

The broad goal of Chapters 7 though 9 is to introduce students to the issues of program
complexity and code organization. They describe how namespaces are used to achieve func-
tional abstraction and data abstraction and, ultimately, encapsulated, modular, and reusable
code. Chapter 8 provides a comprehensive discussion of user-defined classes and OOP. The
full benefit of OOP, however, is best seen in context, which is what Chapter 9 is about.
Additional contexts and examples of OOP are shown in later chapters and specifically in
Sections 11.2, 12.3, and 12.4 as well as in Case Study CS.10. Chapters 7 though 9 provide
a foundation for the students’ future education in data structures and software engineering
methodologies.

Crawling through Foundations and Applications

Chapters 10 through 12, the last three chapters of the textbook, cover a variety of advanced
topics, from fundamental computer science concepts like recursion, regular expressions,
data compression, and depth-first search, to practical and contemporary tools like HTML
parsers, JSON, SQL, and multicore programming. The theme used to motivate and connect
these topics is the development of web crawlers, search engines, and data mining apps.
The theme, however, is loose, and each individual topic is presented independently to allow
instructors to develop alternate contexts and themes for this material as they see fit.

Chapter 10 introduces foundational computer science topics: recursion, search, and the
run-time analysis of algorithms. The chapter starts with a discussion of how to think recur-
sively. This skill is then put to use on a wide variety of problems from drawing fractals to
virus scanning. This last example is used to illustrate depth-first search. The benefits and
pitfalls of recursion lead to a discussion of algorithm run-time analysis, which is then used
in the context of analyzing the performance of various list search algorithms. This chap-
ter puts the spotlight on the theoretical aspects of computing and forms a basis for future
coursework in data structures and algorithms. Case Study CS.10 considers the Tower of
Hanoi problem and shows how to develop a visual application that illustrates the recursive
solution.

Chapter 11 introduces the World Wide Web as a central computing platform and as a
huge source of data for innovative computer application development. HTML, the language
of the web, is briefly discussed before tools to access resources on the web and parse web
pages are covered. To grab the desired content from web pages and other text content, regular
expressions are introduced. A benefit of touching HTML parsing and regular expressions
in an introductory course is that students will be familiar with their uses in context before
rigorously covering them in a formal languages course. Case Study CS.11 makes use of the
different topics covered in this chapter to show how a basic web crawler can be developed.

Chapter 12 covers databases and the processing of large data sets. The database lan-
guage SQL is briefly described as well as a Python’s database application programming
interface in the context of storing data grabbed from a web page. Given the ubiquity of
databases in today’s computer applications, it is important for students to get an early ex-
posure to them and their use (if for no other reason than to be familiar with them before
their first internship). The coverage of databases and SQL is introductory only and should

Preface

XXiii

XXiv

Preface

be considered merely a basis for a later database course. This chapter also considers how
to leverage the multiple cores available on computers to process big data sets more quickly.
Google’s MapReduce problem-solving framework is described and used as a context for
introducing list comprehensions and the functional programming paradigm. This chapter
forms a foundation for further study of databases, programming languages, and data min-
ing. Case Study CS.12 uses this last context to discuss data interchange or how to format
and save data so that it is accessible, easily and efficiently, to any program that needs it.

What Is New in This Edition?

The big change between the first and second editions of the textbook is a structural one.
A clear separation now exists between the foundational material covered in a chapter and
the case study illustrating the concepts covered in the chapter. The case studies have been
moved out of the chapters and are now grouped together in the E-Book Edition of the text-
book. There are two benefits from this structural change. First, the coverage of the textbook
chapters is now more focused on foundational material. The streamlined content, together
with a switch to a Black&White format, allows the new Print Edition of the textbook to
be priced less than the previous one. The second benefit of moving the case studies to the
E-Book Edition is that the move gives more space for the case studies to be enriched. Four
new case studies appear in the new edition, and there is now a case study associated with
every chapter of the textbook (except the “non-technical” introductory chapter).

In addition to this structural change, new material has been added, some material has
been moved, errata have been corrected, and the presentation has been improved. We outline
these changes next.

In Chapter 2, we have added coverage of the tuple type (covered in Chapter 6 in the
first edition). This move is justified because the tuple type is a key built-in type in Python
that is used by many Standard Library modules and Python applications. For example, tuple
objects are used by the image processing modules discussed in the case studies associated
with Chapters 4 and 5. Because the tuple type is very similar to the list type, this additional
content adds very little to the time needed to cover Chapter 2.

In Chapter 3, the presentation of functions has been improved. In particular, there are
more examples and practice problems to help illustrate the passing of different numbers and
types of function parameters. The Chapter 4 case study has been replaced with a new one on
processing image files. The new case study gives students an exciting opportunity to see the
textbook material in the context of visual media. Also, the material on processing and for-
mating date and time strings has been moved to Section 4.2. The important Chapter 5 has, in
the second edition, an associated case study on implementing image processing algorithms.
This material again uses the attractive context of visual media to illustrate fundamental con-
cepts such as nested loops.

Chapter 6 no longer includes coverage of the tuple type (moved to Chapter 2). Chapter 7
has, in the second edition, an associated case study on debugging and the use of a debugger.
It effectively uses the concepts covered in the chapter to provide students with a new tool
that will help them with debugging. Chapters 8 and 9 have changed only slightly. Chapter 10
has a deeper and more explicit coverage of linear recursion and its relationship to iteration.
Chapter 11 has few changes. Finally, Chapter 12 has, in the second edition, an associated
case study on data interchange which will help students gain practical experience working
with data sets.

Finally, about 60 practice and end-of-chapter problems have been added to the book.

For Instructors: How to Use This Book

The material in this textbook was developed for a two quarter course sequence introducing
computer science and programming to computer science majors. The book therefore has
more than enough material for a typical 15-week course (and probably just the right amount
of material for a class of well-prepared and highly motivated students).

The first six chapters of the textbook provide a comprehensive coverage of impera-
tive/procedural programming in Python. They are meant to be covered in order, but it is
possible to cover Chapter 5 before Chapter 4. Furthermore, the topics in Chapter 6 may be
skipped and then introduced as needed.

Chapters 7 through 9 are meant to be covered in order to effectively showcase OOP. It is
important to cover Chapter 7 before Chapter 8 because it demystifies Python’s approach to
class implementation and allows the more efficient coverage of OOP topics such as operator
overloading and inheritance. It is also beneficial, though not necessary, to cover Chapter 9
after Chapter 8 because it provides a context in which OOP is shown to provide great ben-
efits.

Chapters 9 through 12 are all optional, depend only on Chapters 1 through 6—with the
few exceptions noted—and contain topics that can, in general, be skipped or reordered at
the discretion of the course instructor. Exceptions are Section 9.4, which illustrates the OOP
approach to GUI development, as well as Sections 11.2, 12.3, and 12.4, all of which make
use of user-defined classes. All these should follow Chapter 8.

Instructors using this book in a course that leaves OOP to a later course can cover Chap-
ters 1 through 7 and then choose topics from the non-OOP sections of Chapters 9 through
12. Instructors wishing to cover OOP should use Chapters 1 through 9 and then choose
topics from Chapters 10 through 12.

Acknowledgments

The material for the first edition of this textbook was developed over three years in the con-
text of teaching the CSC 241/242 course sequence (Introduction to Computer Science I
and II) at DePaul University. In those three years, six separate cohorts of computer science
freshmen moved through the course sequence. I used the different cohorts to try different
pedagogical approaches, reorder and reorganize the material, and experiment with topics
usually not taught in a course introducing programming. The continuous reorganization
and experimentation made the course material less fluid and more challenging than nec-
essary, especially for the early cohorts. Amazingly, students maintained their enthusiasm
through the low points in the course, which in turn helped me maintain mine. I thank them
all wholeheartedly for that.

I would like to acknowledge the faculty and administration of DePaul’s School of Com-
puting for creating a truly unique academic environment that encourages experimentation
and innovation in education. Some of them also had a direct role in the creation and shap-
ing of this textbook. Associate Dean Lucia Dettori scheduled my classes so I had time to
write. Curt White, an experienced textbook author, encouraged me to start writing and put
in a good word for me with publishing house John Wiley & Sons. Massimo DiPierro, the
creator of the web2py web framework and a far greater Python authority than I will ever be,
created the first outline of the content of the CSC241/242 course sequence, which was the
initial seed for the book. Iyad Kanj taught the first iteration of CSC241 and selflessly allowed
me to mine the material he developed. Amber Settle is the first person other than me to use
this textbook in her course; thankfully, she had great success, though that is at least as much

Preface

XXV

XXVi

Preface

due to her excellence as a teacher. Craig Miller has thought more deeply about fundamen-
tal computer science concepts and how to explain them than anyone I know; I have gained
some of his insights through many interesting discussions, and the textbook has benefited
from them. Finally, Marcus Schaefer improved the textbook by doing a thorough technical
review of more than half of the book.

My course lecture notes would have remained just that if Nicole Dingley, a Wiley book
rep, had not suggested that I make them into a textbook. Nicole put me in contact with Wiley
editor Beth Golub, who made the gutsy decision to trust a foreigner with a strange name
and no experience writing textbooks to write a textbook. Wiley senior designer Madelyn
Lesure, along with my friend and neighbor Mike Riordan, helped me achieve the simple and
clean design of the text. Finally, Wiley senior editorial assistant Samantha Mandel worked
tirelessly on getting my draft chapters reviewed and into production. Samantha has been
a model of professionalism and good grace throughout the process, and she has offered
endless good ideas for making the book better.

The final version of the book is similar to the original draft in surface only. The vast im-
provement over the initial draft is due to the dozens of reviewers, many of them anonymous.
The kindness of strangers has made this a better book and has given me a new appreciation
for the reviewing process. The reviewers have been kind enough not only to find problems
but also offer solutions. For their careful and systematic feedback, I am grateful. Some of the
reviewers, including David Mutchler (Rose-Hulman Institute of Technology), who offered
his name and email for further correspondence, went beyond the call of duty and helped
excavate the potential that lay buried in my early drafts. Jonathan Lundell also provided a
technical review of the last chapters in the book. Because of time constraints, I was not able
to incorporate all the valuable suggestions I received from them, and the responsibility for
any any omissions in the textbook are entirely my own.

I would like to thank, in particular, the following faculty who made use of the first edition
in their courses and gave me invaluable feedback: Ankur Agrawal (Manhattan College), Al-
bert Chan (Fayetteville State University), Gabriel Ferrer (Hendrix College), David G. Kay
(University of California, Irvine), Gerard Ryan (New Jersey Institute of Technology), Srid-
har Seshadri (University of Texas at Arlington), Richard Weiss (Evergreen State College),
and Michal Young (University of Oregon). I have tried my best to incorporate their sugges-
tions in this second edition.

Finally, I would like to thank my spouse, Lisa, and daughters, Marlena and Eleanor, for
the patience they had with me. Writing a book takes a huge amount of time, and this time
can only come from “family time” or sleep since other professional obligations have set
hours. The time I spent writing this book resulted in my being unavailable for family time
or my being crabby from lack of sleep, a real double whammy. Luckily, I had the foresight
to adopt a dog when I started working on this project. A dog named Muffin inevitably brings
more joy than any missing from me... So, thanks to Muffin.

About the Author

Ljubomir Perkovic is an associate professor at the School of Computing of DePaul Univer-
sity in Chicago. He received a Bachelor’s degree in mathematics and computer science from
Hunter College of the City University of New York in 1990. He obtained his Ph.D. in algo-
rithms, combinatorics, and optimization from the School of Computer Science at Carnegie
Mellon University in 1998.

Professor Perkovic started teaching the introductory programming sequence for majors
at DePaul in the mid-2000s. His goal was to share with beginning programmers the ex-

citement that developers feel when working on a cool new app. He incorporated into the
course concepts and technologies used in modern application development. The material
he developed for the course forms the basis of this book.

His research interests include computational geometry, distributed computing, graph
theory and algorithms, and computational thinking. He has received a Fulbright Research
Scholar award for his research in computational geometry and a National Science Foun-
dation grant for a project to expand computational thinking across the general education
curriculum.

Preface

XXvii

CHAPTER

Introduction to 1

Computer Science

1.1 Computer Science 2

1.2 Computer Systems 4

1.3 Python Programming Language 8
1.4 Computational Thinking 9
Chapter Summary 13

IN THIS INTRODUCTORY CHAPTER, we provide the context for the book
and introduce the key concepts and terminology that we will be using
throughout. The starting point for our discussion are several questions.
What is computer science? What do computer scientists and computer
application developers do? And what tools do they use?

Computers, or more generally computer systems, form one set of
tools. We discuss the different components of a computer system
including the hardware, the operating system, the network and the
Internet, and the programming language used to write programs. We
specifically provide some background on the Python programming
language, the language used in this book.

The other set of tools are the reasoning skills, grounded in logic and
mathematics, required to develop a computer application. We introduce
the idea of computational thinking and illustrate how it is used in the
process of developing a small web search application.

The foundational concepts and terminology introduced in this chapter
are independent of the Python programming language. They are relevant
to any type of application development regardless of the hardware or
software platform or programming language used.

2 Chapter 1 Introduction to Computer Science

Table 1.1 The range of
computers science.
Listed are examples of
human activities and, for
each activity, a software
product built by computer
application developers
that supports performing
the activity.

1.1 Computer Science

This textbook is an introduction to programming. It is also an introduction to Python, the
programming language. But most of all, it is an introduction to computing and how to look
at the world from a computer science perspective. To understand this perspective and define
what computer science is, let’s start by looking at what computing professionals do.

What Do Computing Professionals Do?

One answer is to say: they write programs. It is true that many computing professionals
do write programs. But saying that they write programs is like saying that screenwriters
(i.e., writers of screenplays for movies or television series) write text. From our experience
watching movies, we know better: screenwriters invent a world and plots in it to create stories
that answer the movie watcher’s need to understand the nature of the human condition. Well,
maybe not all screenwriters.

So let’s try again to define what computing professionals do. Many actually do not write
programs. Even among those who do, what they are really doing is developing computer
applications that address a need in some activity we humans do. Such computing profession-
als are often called computer application developers or simply developers. Some developers
even work on applications, like computer games, that are not that different from the imagi-
nary worlds, intricate plots, and stories that screenwriters create.

Not all developers develop computer games. Some create financial tools for investment
bankers, and others create visualization tools for doctors (see Table 1.1 for other examples.)

What about the computing professionals who are not developers? What do they do?
Some talk to clients and elicit requirements for computer applications that clients need.

Activity Computer Application

Defense Image processing software for target detection and
tracking

Driving GPS-based navigation software with traffic views on
smartphones and dedicated navigation hardware

Education Simulation software for performing dangerous or
expensive biology laboratory experiments virtually

Farming Satellite-based farm management software that keeps
track of soil properties and computes crop forecasts

Films 3D computer graphics software for creating
computer-generated imagery for movies

Media On-demand, real-time video streaming of television
shows, movies, and video clips

Medicine Patient record management software to facilitate
sharing between specialists

Physics Computational grid systems for crunching data

obtained from particle accelerators

Political activism Social network technologies that enable real-time
communication and information sharing

Shopping Recommender system that suggests products that
may be of interest to a shopper

Space exploration = Mars exploration rovers that analyze the soil to find
evidence of water

Section 1.1 Computer Science

Others are managers who oversee an application development team. Some computing pro-
fessionals support their clients with newly installed software and others keep the software
up to date. Many computing professionals administer networks, web servers, or database
servers. Artistic computing professionals design the interfaces that clients use to interact
with an application. Some, such as the author of this textbook, like to teach computing, and
others offer information technology (IT) consulting services. Finally, more than a few com-
puting professionals have become entrepreneurs and started new software businesses, many
of which have become household names.

Regardless of the ultimate role they play in the world of computing, all computing pro-
fessionals understand the basic principles of computing, how computer applications are
developed, and how they work. Therefore, the training of a computing professional always
starts with the mastery of a programming language and the software development process.
In order to describe this process in general terms, we need to use slightly more abstract
terminology.

Models, Algorithms, and Programs

To create a computer application that addresses a need in some area of human activity, de-
velopers invent a model that represents the “real-world” environment in which the activity
occurs. The model is an abstract (imaginary) representation of the environment and is de-
scribed using the language of logic and mathematics. The model can represent the objects
in a computer game, stock market indexes, an organ in the human body, or the seats on an
airplane.

Developers also invent algorithms that operate in the model and that create, transform,
and/or present information. An algorithm is a sequence of instructions, not unlike a cooking
recipe. Each instruction manipulates information in a very specific and well-defined way,
and the execution of the algorithm instructions achieves a desired goal. For example, an
algorithm could compute collisions between objects in a computer game or the available
economy seats on an airplane.

The full benefit of developing an algorithm is achieved with the automation of the ex-
ecution of the algorithm. After inventing a model and an algorithm, developers implement
the algorithm as a computer program that can be executed on a computer system. While
an algorithm and a program are both descriptions of step-by-step instructions of how to
achieve a result, an algorithm is described using a language that we understand but that can-
not be executed by a computer system, and a program is described using a language that we
understand and that can be executed on a computer system.

At the end of this chapter, in Section 1.4, we will take up a sample task and go through
the steps of developing a model and an algorithm implementing the task.

Tools of the Trade

We already hinted at a few of the tools that developers use when working on computer ap-
plications. At a fundamental level, developers use logic and mathematics to develop models
and algorithms. Over the past half century or so, computer scientists have developed a vast
body of knowledge—grounded in logic and mathematics—on the theoretical foundations
of information and computation. Developers apply this knowledge in their work. Much of
the training in computer science consists of mastering this knowledge, and this textbook is
the first step in that training.

The other set of tools developers use are computers, of course, or more generally com-
puter systems. They include the hardware, the network, the operating systems, and also the

3

4 Chapter 1

Introduction to Computer Science

programming languages and programming language tools. We describe all these systems
in more detail in Section 1.2. While the theoretical foundations often transcend changes in
technology, computer system tools are constantly evolving. Faster hardware, improved op-
erating systems, and new programming languages are being created almost daily to handle
the applications of tomorrow.

What Is Computer Science?

We have described what application developers do and also the tools that they use. What
then is computer science? How does it relate to computer application development?

While most computing professionals develop applications for users outside the field of
computing, some are studying and creating the theoretical and systems tools that developers
use. The field of computer science encompasses this type of work. Computer science can
be defined as the study of the theoretical foundations of information and computation and
their practical implementation on computer systems.

While application development is certainly a core driver of the field of computer sci-
ence, its scope is broader. The computational techniques developed by computer scientists
are used to study questions on the nature of information, computation, and intelligence.
They are also used in other disciplines to understand the natural and artificial phenomena
around us, such as phase transitions in physics or social networks in sociology. In fact, some
computer scientists are now working on some of the most challenging problems in science,
mathematics, economics, and other fields.

We should emphasize that the boundary between application development and computer
science (and, similarly, between application developers and computer scientists) is usually
not clearly delineated. Much of the theoretical foundations of computer science have come
out of application development, and theoretical computer science investigations have often
led to innovative applications of computing. Thus many computing professionals wear two
hats: the developer’s and the computer scientist’s.

1.2 Computer Systems

A computer system is a combination of hardware and software that work together to execute
application programs. The hardware consists of physical components—that is, components
that you can touch, such as a memory chip, a keyboard, a networking cable, or a smartphone.
The software includes all the nonphysical components of the computer, including the op-
erating system, the network protocols, the programming language tools, and the associated
application programming interface (API).

Computer Hardware

The computer hardware refers to the physical components of a computer system. It may
refer to a desktop computer and include the monitor, the keyboard, the mouse, and other
external devices of a computer desktop and, most important, the physical “box” itself with
all its internal components.

The core hardware component inside the box is the central processing unit (CPU) . The
CPU is where the computation occurs. The CPU performs computation by fetching program
instructions and data and executing the instructions on the data. Another key internal com-
ponent is main memory, often referred to as random access memory (RAM). That is where
program instructions and data are stored when the program executes. The CPU fetches in-

Section 1.2 Computer Systems

structions and data from main memory and stores the results in main memory.

The set of wirings that carry instructions and data between the CPU and main memory is
commonly called a bus. The bus also connects the CPU and main memory to other internal
components such as the hard drive and the various adapters to which external devices (such
as the monitor, the mouse, or the network cables) are connected.

The hard drive is the third core component inside the box. The hard drive is where files
are stored. Main memory loses all data when the computer is shut down; the hard drive,
however, is able to store a file whether the computer is powered on or off. The hard drive
also has a much, much higher capacity than main memory.

The term computer system may refer to a single computer (desktop, laptop, smartphone,
or pad). It may also refer to a collection of computers connected to a network (and thus
to each other). In this case, the hardware also includes any network wiring and specialized
network hardware such as routers.

It is important to understand that most developers do not work with computer hardware
directly. It would be extremely difficult to write programs if the programmer had to write
instructions directly to the hardware components. It would also be very dangerous because
a programming mistake could incapacitate the hardware. For this reason, there exists an
interface between application programs written by a developer and the hardware.

Operating Systems
An application program does not directly access the keyboard, the computer hard drive, the
network (and the Internet), or the display. Instead it requests the operating system (OS) to
do so on its behalf. The operating system is the software component of a computer system
that lies between the hardware and the application programs written by the developer. The
operating system has two complementary functions:
1. The OS protects the hardware from misuse by the program or the programmer and
2. The OS provides application programs with an interface through which programs
can request services from hardware devices.
In essence, the OS manages access to the hardware by the application programs executing
on the machine.

Origins of Today’s Operating Systems

The mainstream operating systems on the market today are Microsoft Windows
and UNIX and its variants, including Linux and Apple OS X.

The UNIX operating system was developed in the late 1960s and early 1970s by
Ken Thompson at AT&T Bell Labs. By 1973, UNIX was reimplemented by Thomp-
son and Dennis Ritchie using C, a programming language just created by Ritchie.
As it was free for anyone to use, C became quite popular, and programmers ported
C and UNIX to various computing platforms. Today, there are several versions of
UNIX, including Apple’s Mac OS X.

The origin of Microsoft's Windows operating systems is tied to the advent of
personal computers. Microsoft was founded in the late 1970s by Paul Allen and
Bill Gates. When IBM developed the IBM Personal Computer (IBM PC) in 1981,
Microsoft provided the operating system called MS DOS (Microsoft Disk Operating
System). Since then Microsoft has added a graphical interface to the operating

DETOUR

5

6 Chapter 1 Introduction to Computer Science

DETOUR

system and renamed it Windows. The latest version is Windows 7.

Linux is a UNIX-like operating sytem developed in the early 1990s by Linus Tor-
valds. His motivation was to build a UNIX-like operating system for personal com-
puters since, at the time, UNIX was restricted to high-powered workstations and
mainframe computers. After the initial development, Linux became a community-
based, open source software development project. That means that any devel-
oper is welcome to join in and help in the further development of the Linux OS.
Linux is one of the best examples of successful open-source software develop-
ment projects.

Networks and Network Protocols

Many of the computer applications we use daily require the computer to be connected to the
Internet. Without an Internet connection, you cannot send an email, browse the web, listen
to Internet radio, or update your software. In order to be connected to the Internet, though,
you must first connect to a network that is part of the Internet.

A computer network is a system of computers that can communicate with each other.
There are several different network communication technologies in use today, some of which
are wireless (e.g., Wi-Fi) and others that use network cables (e.g., Ethernet).

An internetwork is the connection of several networks. The Internet is an example of an
internetwork. The Internet carries a vast amount of data and is the platform upon which the
World Wide Web (WWW) and email are built.

Beginning of the Internet

On October 29, 1969, a computer at the University of California at Los Angeles
(UCLA) made a network connection with a computer at the Stanford Research In-
stitute (SRI) at Stanford University. The ARPANET, the precursor to today’s Internet,
was born.

The development of the technologies that made this network connection pos-
sible started in the early 1960s. By that time, computers were becoming more
widespread and the need to connect computers to share data became apparent.
The Advanced Research Projects Agency (ARPA), an arm of the U.S. Department
of Defense, decided to tackle the issue and funded network research at several
American universities. Many of the networking technologies and networking con-
cepts in use today were developed during the 1960s and then put to use on October
29, 1969.

The 1970s saw the development of the TCP/IP network protocol suite that is still
in use today. The protocol specifies, among other things, how data travels from one
computer on the Internet to another. The Internet grew rapidly during the 1970s and
1980s but was not widely used by the general public until the early 1990s, when
the World Wide Web was developed.

Section 1.2 Computer Systems

Programming Languages

What distinguishes computers from other machines is that computers can be programmed.
‘What this means is that instructions can be stored in a file on the hard drive, and then loaded
into main memory and executed on demand. Because machines cannot process ambiguity
the way we (humans) can, the instructions must be precise. Computers do exactly what they
are told and cannot understand what the programmer “intended” to write.

The instructions that are actually executed are machine language instructions. They are
represented using binary notation (i.e., a sequence of Os and 1s). Because machine language
instructions are extremely hard to work with, computer scientists have developed program-
ming languages and language translators that enable developers to write instructions in a
human readable language and then translate them into machine language. Such language
translators are referred to as assemblers, compilers, or interpreters, depending on the pro-
gramming language.

There are many programming languages out there. Some of them are specialized lan-
guages meant for particular applications such as 3D modeling or databases. Other languages
are general-purpose and include C, C++, C#, Java, and Python.

While it is possible to write programs using a basic text editor, developers use Inte-
grated Development Environments (IDEs) that provide a wide array of services that support
software development. They include an editor to write and edit code, a language translator,
automated tools for creating binary executables, and a debugger.

Computer Bugs

When a program behaves in a way that was not intended, such as crashing, freezing
the computer, or simply producing erroneous output, we say that the program has a
bug (i.e., an error). The process of removing the error and correcting the program is
called debugging. A debugger is a tool that helps the developer find the instructions
that cause the error.

The term “bug” to denote an error in a system predates computers and computer
science. Thomas Edison, for example, used the term to describe faults and errors
in the engineering of machines all the way back in the 1870s. Interestingly, there
have also been cases of actual bugs causing computer failures. One example, as
reported by computing pioneer Grace Hopper in 1947, is the moth that caused the
Mark Il computer at Harvard, one of the earliest computers, to fail.

Software Libraries

A general-purpose programming language such as Python consists of a small set of general-
purpose instructions. This core set does not include instructions to download web pages,
draw images, play music, find patterns in text documents, or access a database. The reason
why is essentially because a “sparser” language is more manageable for the developer.

Of course, there are application programs that need to access web pages or databases.
Instructions for doing so are defined in software libraries that are separate from the core
language, and they must be explicitly imported into a program in order to be used. The
description of how to use the instructions defined in a library is often referred to as the
application programming interface (API).

DETOUR

7

8 Chapter 1 Introduction to Computer Science

CAUTION

1.3 Python Programming Language

In this textbook, we introduce the Python programming language and use it to illustrate
core computer science concepts, learn programming, and learn application development in
general. In this section, we give some background on Python and how to set up a Python
IDE on your computer.

Short History of Python

The Python programming language was developed in the late 1980s by Dutch programmer
Guido van Rossum while working at CWI (the Centrum voor Wiskunde en Informatica in
Amsterdam, Netherlands). The language was not named after the large snake species but
rather after the BBC comedy series Monty Python’s Flying Circus. Guido van Rossum hap-
pens to be a fan. Just like the Linux OS, Python eventually became an open source software
development project. However, Guido van Rossum still has a central role in deciding how the
language is going to evolve. To cement that role, he has been given the title of “Benevolent
Dictator for Life” by the Python community.

Python is a general-purpose language that was specifically designed to make programs
very readable. Python also has a rich library making it possible to build sophisticated ap-
plications using relatively simple-looking code. For these reasons, Python has become a
popular application development language and also the preferred “first” programming lan-
guage.

Python 2 versus Python 3

There are currently two major versions of Python in use. Python 2 was originally
made available in 2000; its latest release is 2.7. Python 3 is a new version of Python
that fixes some less-than-ideal design decisions made in the early development
of the Python language. Unfortunately, Python 3 is not backward compatible with
Python 2. This means that a program written using Python 2 usually will not execute
properly with a Python 3 interpreter.

In this textbook, we have chosen to use Python 3 because of its more consistent
design. To learn more about the difference between the two releases, see:

http://wiki.python.org/moin/Python2orPython3

Setting Up the Python Development Environment

If you do not have Python development tools installed on your computer already, you will

need to download a Python IDE. The official list of Python IDE:s is at
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

We illustrate the IDE installation using the standard Python development kit that in-
cludes the IDLE IDE. You may download the kit (for free) from:

http://python.org/download/

Listed there are installers for all mainstream operating systems. Choose the appropriate one
for your system and complete the installation.

To get started with Python, you need to open a Python interactive shell window. The
IDLE interactive shell included with the Python IDE is shown in Figure 1.1.

http://wiki.python.org/moin/Python2orPython3
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://python.org/download

Section 1.4 Computational Thinking 9

Figure 1.1 The IDLE IDE.

| OO Python Shell

The IDLE Integrated
Python 3.2.1 (v3.2.1:acl£7e¢5c0510, Jul 9 2011, 01:03:53))
(GCC 4.2.1 (Apple Inc. build 5666) (dot 3)) on darwin Development Environment
Type “copyright", "credits" or "license()" for more information. - .
L e # By : i is included in the standard

implementation of Python.
Shown is the IDLE
interactive shell. At the >>>
prompt, you can type single
Python instructions. The
instruction is executed by
the Python interpreter when
the Enter/Return key is
pressed.

Ln: 4 Col: 4

The interactive shell expects the user to type a Python instruction. When the user types

the instruction print ('Hello world') and then presses the | Enter/Return | key on the

keyboard, a greeting is printed:

Python 3.2.1 (v3.2.1:ac1f7e5c0510, Jul 9 2011, 01:03:53)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.
>>> print('Hello world')

Hello world

The interactive shell is used to execute single Python instructions like print ('Hello world').
A program typically consists of multiple instructions that must be stored in a file before be-
ing executed.

1.4 Computational Thinking

In order to illustrate the software development process and introduce the software develop-
ment terminology, we consider the problem of automating a web search task. To model the
relevant aspects of the task and describe the task as an algorithm, we must understand the
task from a “computational” perspective. Computational thinking is a term used to describe
the intellectual approach through which natural or artificial processes or tasks are under-
stood and described as computational processes. This skill is probably the most important
one you will develop in your training as a computer scientist.

A Sample Problem

We are interested in purchasing about a dozen prize-winning novels from our favorite online
shopping web site. The thing is, we do not want to pay full price for the books. We would
rather wait and buy the books on sale. More precisely, we have a target price for each book
and will buy a book only when its sale price is below the target. So, every couple of days,
we visit the product web page of every book on our list and, for each book, check whether
the price has been reduced to below our target.

